
Mécanique des structures

Chapitre 0: Introduction

Dr. Alain Prenleloup SGM BA3 2024-2025

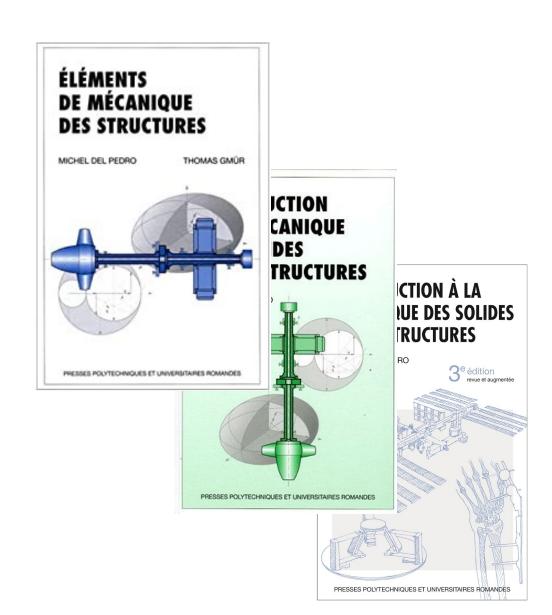
Organisation

Cours: sur site + zoom: https://epfl.zoom.us/j/62407280941

Alternance théorie et exemples

Exercice: sur site

1 heure le mercredi de 11h – 12h


Support de cours : Moodle

- Slides du cours
- Série d'exercice
- Corrigé des exercices (mise en ligne le vendredi)
- Série d'exercice supplémentaire (réponse, sans corrigé détaillé)

Support de cours

Note

Objectif:

- Midterm : ne pas attendre la fin du semestre pour assimiler les notions
- Examen : synthèse des compétences acquises

Notation

Examen de 90 minutes en semaine 9 (11 nov.)
 30% de la note

Examen final en session d'examen 70% de la note

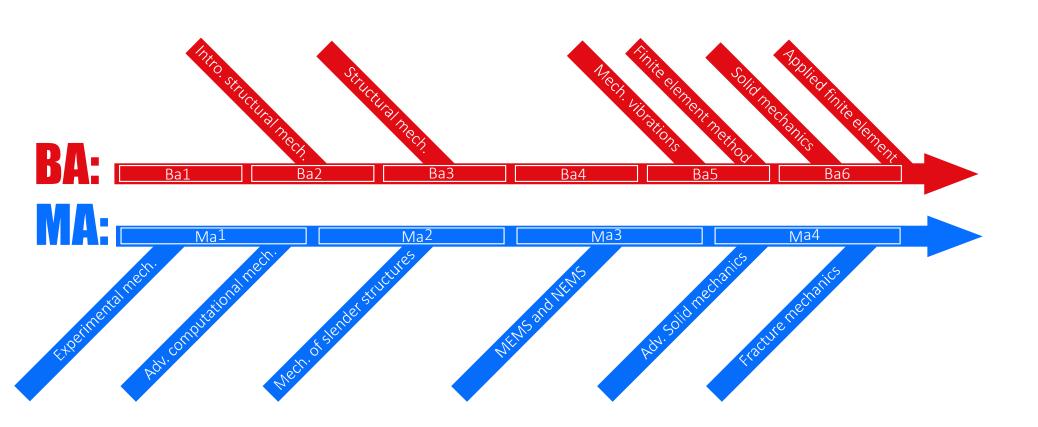
Matériel

- Midterm : open-book (uniquement support de cours)
- Examen : formulaire personnel A4 recto-verso

Chapitre

- Introduction
- 1. Équilibre intérieur des solides
- 2. Traction ou compression simple
- 3. Etat de contraintes bidimensionnel
- 4. Cisaillement simple
- 5. Torsion simple
- 6. Flexion des poutres droites
- 7. Déformée des poutres droites en flexion simple
- 8. (Flexion dérivée et flexion composée)
- 9. Flexion des poutres courbes
- 10. Energie de déformation
- 11. Systèmes hyperstatiques
- 12. Flambage des poutres
- 13. Analyse de l'état de contrainte et de déformation
- 14. Élément d'élasticité linéaire
- 15. Critère de rupture de l'équilibre élastique

Planning


- 1. 09 / 11 sept. Ch.0-1 Introduction & ch.1
- 2. (16) / 18 sept. Ch.1 Equilibre intérieur des solides exo. sem-2
- 3. 23 / 25 sept. Ch.2 Traction ou compression simple exo. sem-3
- 4. 30 / 02 oct. Ch.3-4 Cisaillement simple & contr. bidim. exo. sem-4
- 5. 07 / 09 oct. Ch.5 Torsion simple exo. sem-5
- 6. 14 / 16 oct. Ch.6 Flexion des poutres droites exo. sem-6
 - (21 / 23 oct.)
- 7. 28 / 30 oct. Ch.7 Déformée des poutres exo. sem-7

Vacances

- 8. 04 / 06 nov. Ch.7-8 Flexion composée exo. sem-8
- 9. 11 / 13 nov. Midterm
- 10. 18 / 20 nov. Ch.10 Energie de déformation exo. sem-10
- 11. 25 / 27 nov. Ch.11 Systèmes hyperstatiques exo. sem-11
- 12. 02 / 04 déc. Ch.12 Flambage des poutres exo. sem-12
- 13. 09 / 11 déc. Ch.15 Critère de rupture exo. sem-13
- 14. 16 / 18 déc. Ch.13 Analyse de l'état de contrainte exo. sem-14

Chronologie (® ME-104)

Lexique et nomenclature ® ME-104

Geometry Géométrie

Thin/Slender Élancé
Slenderness parameter Paramètre d'élancement
Cross-section Section droite
Centerline Fibre moyenne
Centroid Barycentre

String Fil Beam Poutre Arch Arc Cantilever beam Poutre console Truss network Treillis Truss element Élément dún treillis

Plate Plaque Shell Coque

Models Modèles

Loads Efforts

Deflection Flèche

Traction/compression
Tensile/compressive force Force de traction/compression
External force/moment/stress Force/moment/effort extérieur(e)
Internal force/moment/stress Force/moment/effort intérieur(e)
Normal force
Shear force Effort trenchant
Bending moment Moment fléchissant

Formulation Formulation

Virtual motion Déplacement virtual
Virtual internal/external work Travaux virtuels des efforts intérieurs
Statically indeterminate/hyperstatic Hyperstatique
Isostatic Isostatique
Hypostatic Hypostatique
Degree of redundancy Deg'ree d'hyperstaticité
Method of sections Méthode des coupures
Redundant force Inconnue hyperstatique

Kinematics Cinématique

Stretching/contraction Étirement/contraction

Bending Flexion

Curvature Courbure

Twisting Torsion

Axial stretch Étirement axial

Axial strain Déformation axiale

Mechanical response Réponse mécanique

buckling Flambement
Buckling load Charge de flambement
Bending/twisting modulus Module de flexion/torsion

Notations

Alphabète latin

module d'élasticité flèche d'une poutre due au moment de flexion aire plane (section plane) aire de la section partielle (contrainte de cisaillement en flexion) F_{y}, F_{y} faces de normale x et ysection oblique d'angle φ centre d'inertie d'une aire plane module de glissement rayon de giration d'une aire plane par rapport à un axe donné rayons de giration d'une aire plane par rapport aux axes x et v i, j, k vecteurs unitaires selon les axes x, y et zmoment d'inertie d'une aire plane par rapport à un axe donné moment d'inertie polaire d'une aire plane moments d'inertie d'une aire plane par rapport aux axes x et y moment centrifuge d'une aire plane par rapport aux axes x I_{xv} et v rigidité d'un ressort k moment de flexion M M_4, \dots moments appliqués aux points A, B, \dots amplitude du moment de flexion M_f $M_{fv}M_{fc}$ composantes du moment de flexion M_{f} selon les axes y et

amplitude du moment de torsion M_t moment de flexion vectoriel $\mathbf{M}_{\mathbf{f}}$ moment de torsion vectoriel M. coefficient de sécurité effort normal abscisse curviligne moment statique de la section partielle F S_x , S_y moments statiques d'une aire plane selon les axes x et y amplitude de l'effort tranchant T T_{v} , T_{z} composantes de l'effort tranchant T selon les axes y et zeffort tranchant vectoriel densité d'énergie de déformation (énergie spécifique de déformation) énergie de déformation élastique variation relative de volume moment de résistance polaire d'une aire plane (moment de résistance à la torsion) W_1 , W_2 moments de résistance à la flexion x, y, z axes de référence X, Y, Z axes principaux déformée due au moment de flexion \mathcal{V} pente de la déformée d'une poutre ycourbure de la déformée d'une poutre

Notations

Alphabète grec

coefficient de dilatation thermique angle de glissement angle de glissement global en flexion amplitude de déformation déplacement allongement spécifique dilatation de rupture \mathcal{E}_{B} allongement transversal relatif \mathcal{E}_t ε_x , ε_y , ε_z déformations selon les axes x, y et zcoefficient de Poisson coordonnée selon l'axe x du centre d'inertie d'une aire plane masse volumique ρ rayon de courbure ρ contrainte normale σ résistance à la compression du matériau $\sigma_{\!\scriptscriptstyle BC}$ résistance à la traction du matériau $\sigma_{\!\scriptscriptstyle R}$ contrainte critique limite apparente d'élasticité (limite d'écoulement) du σ_{e} matériau limite apparente d'élasticité du matériau en compression $\sigma_{\!\!ec}$ limite apparente d'élasticité du matériau en traction $\sigma_{\!\!et}$ contrainte de comparaison (contrainte équivalente) $\sigma_{\!\!g}$ limite de proportionnalité du matériau σ_{y} , σ_{y} , σ_{z} contraintes normales selon les axes x, y et z

σ_1 , σ_2 , σ_3 contraintes principales

τ contrainte tangentielle

 au_e limite apparente d'élasticité du matériau en torsion

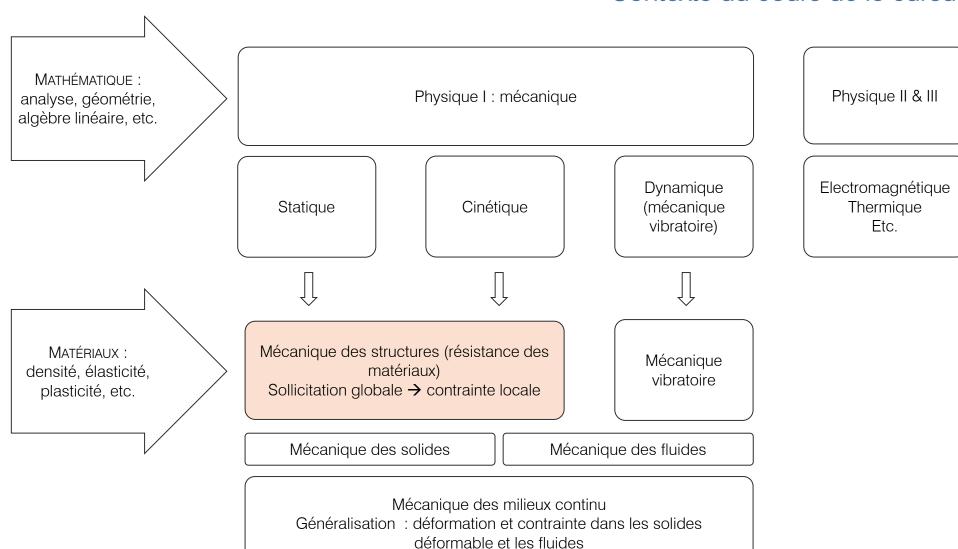
 au_x , au_y contraintes tangentielles selon les axes x et y sur une face donnée

 au_{xy} , au_{xz} contraintes tangentielles selon les axes y et z sur une face de normale x

 au_{yx} , au_{yz} contraintes tangentielles selon les axes x et z sur une face de normale y

 au_{zx} , au_{zy} contraintes tangentielles selon les axes x et y sur une face de normale x

 φ angle associé aux coordonnées polaires


 φ angle d'inclinaison d'une section oblique

 φ angle de rotation d'une poutre en flexion

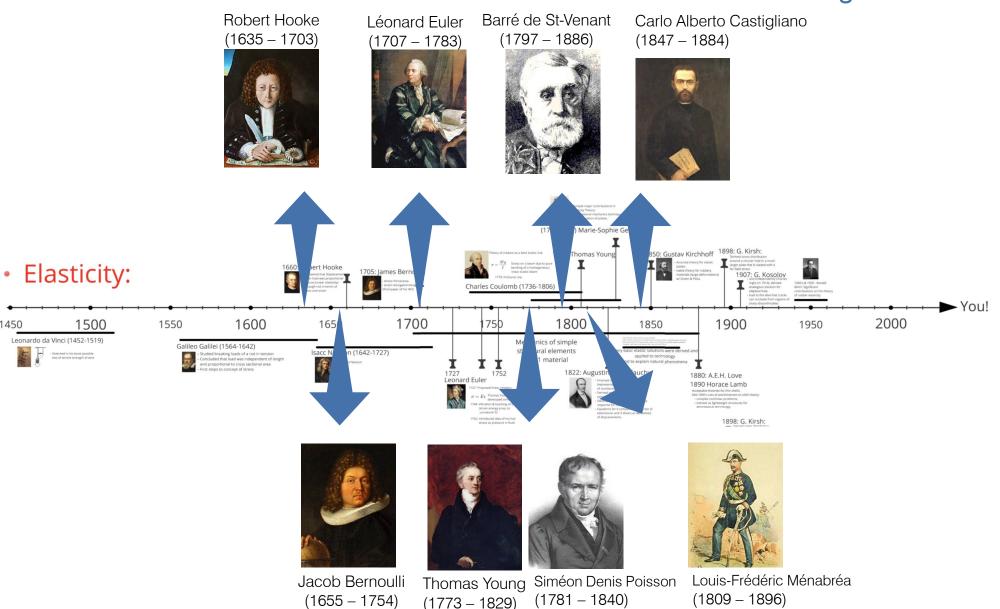
 $\ensuremath{\varphi}$ déformation angulaire d'une barre en torsion (angle de torsion)

Contexte du cours de le cursus

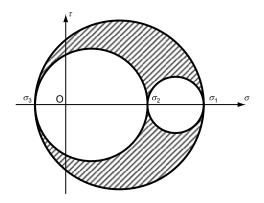
Contexte du cours de le cursus

@Wiki:

- La statique, ou mécanique statique, est la branche de la physique qui étudie les systèmes mécaniques au repos
- En physique, la cinématique (du grec mouvement) est <u>l'étude des mouvements</u> indépendamment des causes qui les produisent
- La dynamique (du grec ancien puissant, efficace) est une discipline de la mécanique classique qui étudie les corps en mouvement sous l'influence des actions mécaniques qui leur sont appliquées. Elle combine la statique qui étudie l'équilibre des corps au repos, et la cinématique qui étudie le mouvement.


Contexte du cours de le cursus

@Wiki:


- La résistance des matériaux (ou mécanique des structures) est une discipline particulière de la mécanique des milieux continus permettant le calcul des contraintes et déformations dans les structures des différents matériaux. Elle permet de ramener l'étude du comportement global d'une structure (relation entre sollicitations forces ou moments et déplacements) à celle du comportement local des matériaux la composant.
- La *mécanique des solides*, est la branche de la mécanique des milieux continus qui étudie le comportement des matériaux solides, en particulier leur mouvement et leur déformation sous l'action de forces, de changements de température, de changements de phase et d'autres agents externes ou internes (parfois associée uniquement à la cinématique des corps rigides indéformables)
- La mécanique des milieux continus est le domaine de la mécanique qui s'intéresse à la déformation des solides et à l'écoulement des fluides

Chronologie ® ME-104

Mécanique des structures

Chapitre 0: Introduction

Dr. Alain Prenleloup SGM BA3 2024-2025

Démarche et applications

(A) Introduction des notions générales et des hypothèses

Mathématique

(B) Identification des efforts non-nuls

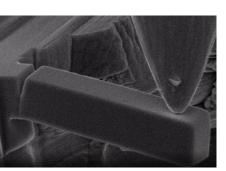
Statique

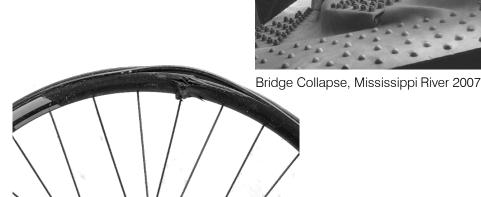
(C) Expression des contraintes normale et tangentiel résultantes

Mécanique des solides

(D) Analyse de l'état de contrainte

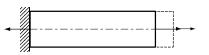
Compétence d'ingénieur


(E) Énergie de déformation (force & déplacement)

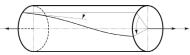

Démarche et applications

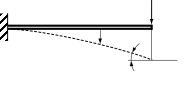
- Définir le modèle par un dessin et un système de coordonnées (hypothèses) 1)
- Identifier tous les efforts (forces et moments) externes et internes
- Identifié les inconnues (et l'hyperstatisme) 3)
- Appliquer les équations d'équilibre ($\Sigma F = 0$ et $\Sigma M = 0$)
- Identifier les mécanismes physique et poser les équations d'élasticité adéquats 5)
- Calculer les contraintes (σ et τ) et définir un critère d'intégrité (ex : $\sigma_{vonMises}$) 6)
- Interpréter les résultats (réflexion d'ingénieur)

Micro-Cantilever Fracture Testing



Démarche et applications


- 5) Identifier les mécanismes physique et poser les équations d'élasticité adéquats
 - Traction-compression


Cisaillement

Torsion

Flexion

Flambage

- 6) Calculer les contraintes (σ et τ) et définir un critère d'intégrité (ex : $\sigma_{vonMises}$)
 - Loi d'élasticité

$$\sigma = E \varepsilon$$

Critère

$$n = rac{\sigma_{limite}}{\sigma_{caract\'eristique}}$$

Objectifs

- Objectif 1 : Appliquer vos connaissances de math-physique pour dimensionner des problèmes «simple» bi- ou tri-dimensionnelle
- Objectif 2: Déterminer les contraintes et déformations dans les structures en fonction des charges
- Objectif 3: Comprendre les mécanisme physique et les hypothèses mathématiques qui permettent de déterminer un critère d'intégrité (coefficient de sécurité)

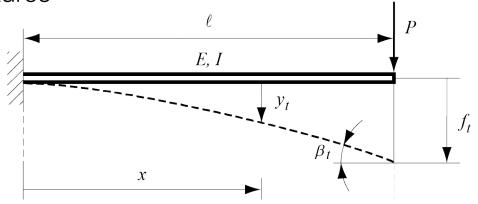
Coefficient de sécurité

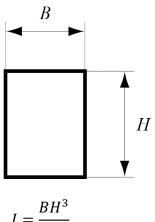
- pièces de structure en acier : 1.1 à 1.5
- aviation : n = 1.5
- domaine du génie civil : n = 1.5
- appareils de levage industriels par chaîne/câble/sangle : n = 4/5/7
- ascenseur: n = 10
- mécanismes : n = 2.5 à 10
- choc ou sollicitation mal connue : n = 10 15
- Identifier les incertitudes : hypothèse, propriété des matériaux, singularités, etc.
- Intérêts et limites de la simulation numérique vs mécanique des structures

Exemple: poutre en flexion

Mécanique des structures

$$P = 30 \text{ kN}$$


$$E = 210 \text{ GPa}$$


$$G = 80 \text{ GPa}$$

$$B = 5 \text{ cm}$$

$$H = 10 \text{ cm}$$

$$\ell = 1 \, \mathrm{m}$$

$$I = \frac{BH^3}{12}$$

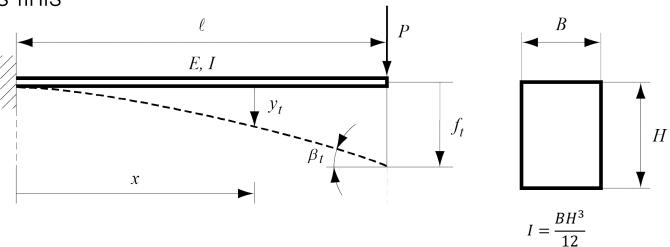
•
$$f_t = \frac{P \ell^3}{3EI} + \eta \frac{P\ell}{GF} = 11.4 + 0.09 = 11.49 \text{ mm}$$

•
$$\sigma_{max} = \sigma(x = 0, y = H/2) = \frac{yM(x)}{I} = \frac{6 P \ell}{BH^2} = 360 \text{ MPa}$$

Exemple: poutre en flexion

Méthode des éléments finis

P = 30 kN


E = 210 GPa

G = 80 GPa

B = 5 cm

H = 10 cm

 $\ell = 1 \text{ m}$

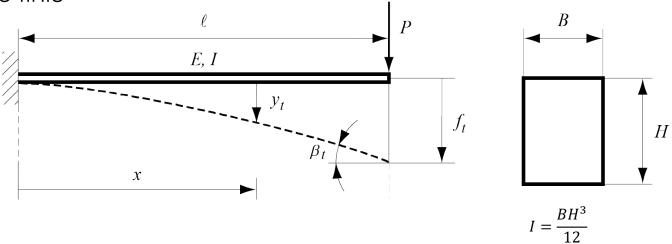
Question importantes

- Quelles sont les hypothèses considérés ? Conditions aux limites, linéarité, etc.
- Qu'elle est la physique représentée : mécanique, thermique, dynamique, etc.
- Que cherche-t-on a déterminer et avec quelles approximations?

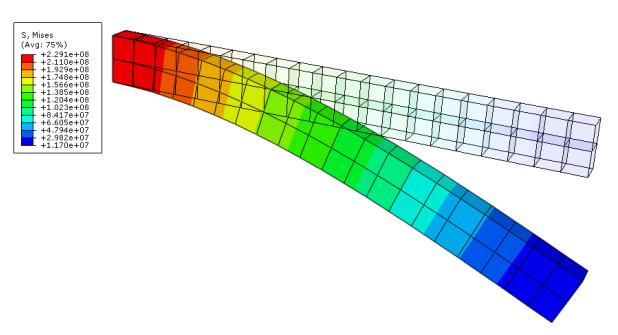
Exemple: poutre en flexion

Méthode des éléments finis

P = 30 kN


E = 210 GPa

G = 80 GPa


B = 5 cm

H = 10 cm

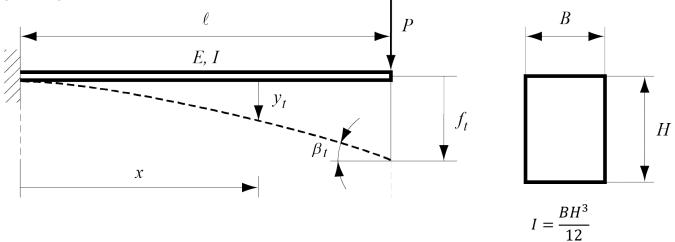
 $\ell = 1 \, \mathrm{m}$

- $f_t = 15.26 \neq 11.49 \text{ mm}$
- $\sigma_{max} = 229 \neq 360 \text{ MPa}$

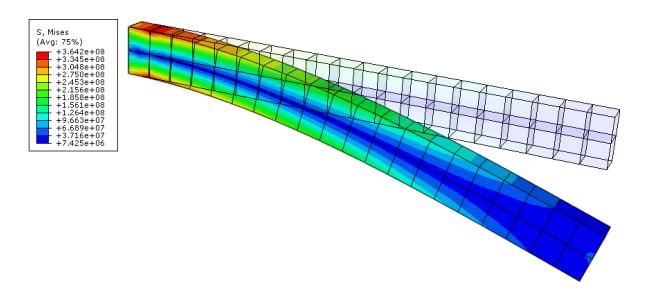
Exemple: poutre en flexion

Méthode des éléments finis

P = 30 kN


E = 210 GPa

G = 80 GPa


B = 5 cm

H = 10 cm

 $\ell = 1 \, \mathrm{m}$

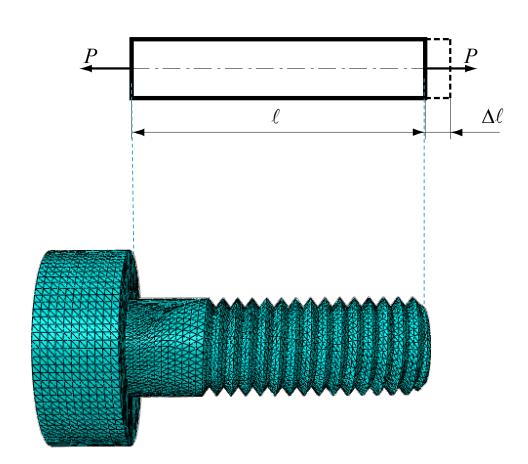
- $f_t = 11.5 \cong 11.49 \text{ mm}$
- $\sigma_{max} = 364 \cong 360 \text{ MPa}$

Exemple: charge maximale d'une vis

Mécanique des structures

$$E = 210 \text{ GPa}$$

 $\ell = 30 \text{ mm}$


$$P = 55 \text{ kN}$$

$$\emptyset = M10$$

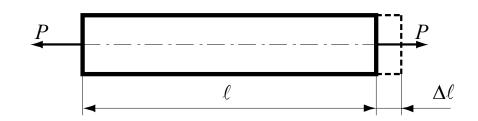
$$\sigma_{\rm classe~8.8}=$$
 1034 MPa

•
$$\Delta \ell = \frac{P \ell}{E F} = 0.1 \text{ mm}$$

•
$$\sigma = \frac{P}{F} = \frac{\Delta \ell}{\ell} \; E = \varepsilon \; E = 700 \; \text{MPa}$$

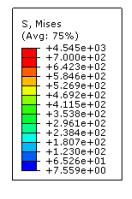
Exemple: charge maximale d'une vis

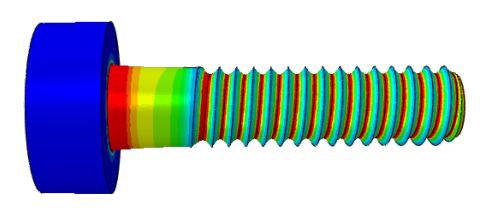
Mécanique des structures


$$E = 210 \, \text{GPa}$$

$$\ell=30~\text{mm}$$

$$P = 55 \text{ kN}$$


$$\emptyset = M10$$


$$\sigma_{\rm classe~8.8}=$$
 1034 MPa

•
$$\Delta \ell = \frac{P \ell}{E F} = 0.1 \text{ mm}$$

• $\sigma_{von \, Mise} = 4545 \neq 700 \, \text{MPa}$

Pourquoi de la mécanique des structures ?

- A. Quelles sont les contraintes principales dans les parties de l'encrage
- B. Estimer les contraintes maximum sur l'une des zones d'encrage

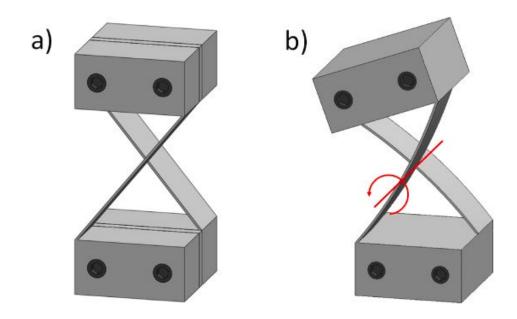
Pourquoi de la mécanique des structures ?

Objectif : Quel est l'intérêt des ce profile de poutre?

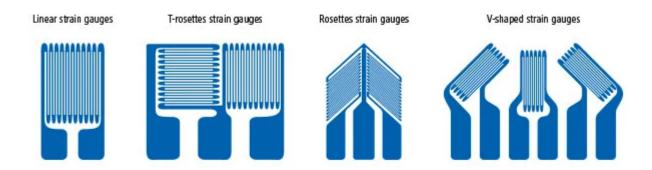
Pourquoi de la mécanique des structures ?

- A. Quelles sont les contraintes principales dans la poutre
- B. Quelles zones subissent une contrainte maximal

Pourquoi de la mécanique des structures ?


- A. Quel couple maximum peut être transmis par cette turbine (estimer la puissance max)?
- B. Tension dans les vis de couplage pour garantir une transmission par frottement

Pourquoi de la mécanique des structures ?


Déterminer la rigidité d'un guidage flexible

Pourquoi de la mécanique des structures?

- A. Comment fonctionne une jauge de déformation
- B. Où positionner et comment orienter une jauge extensométrique

Pourquoi de la mécanique des structures ?

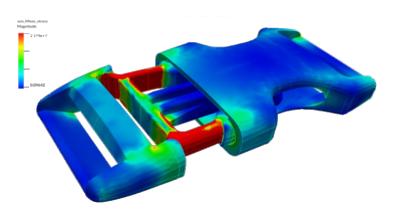
Quel objet est adapté pour fermé hermétiquement une bouteille et pourquoi?

Pourquoi de la mécanique des structures ?

Comment travaille les câbles?

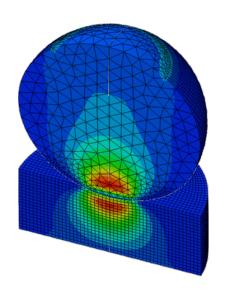
Pourquoi de la mécanique des structures ?

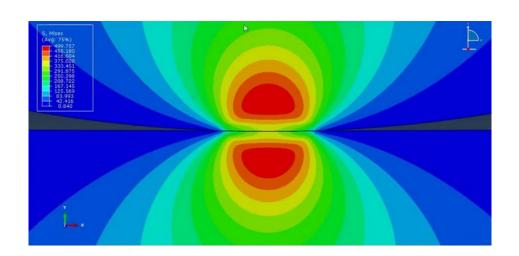
Quelle interprétation faut-il faire des champs de contrainte simulés?



Pourquoi de la mécanique des structures ?

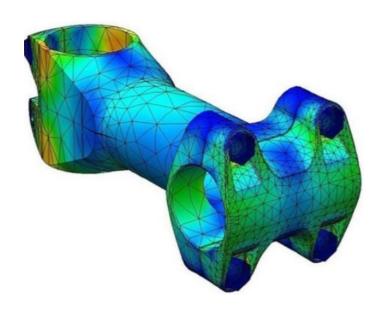
Quelle interprétation faut-il faire des champs de contrainte simulés?

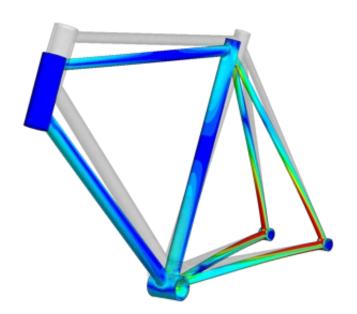




Pourquoi de la mécanique des structures ?

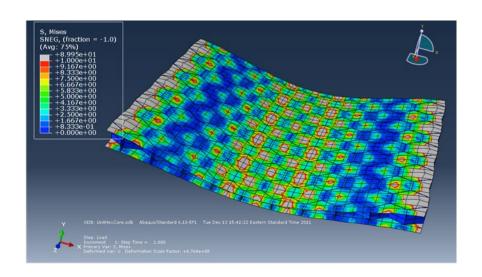
Quelle interprétation faut-il faire des champs de contrainte simulés?

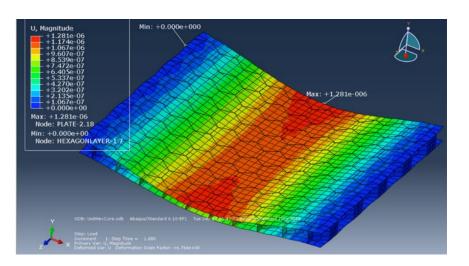


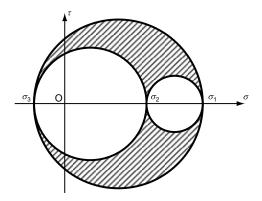


Pourquoi de la mécanique des structures ?

Quelle interprétation faut-il faire des champs de contrainte et déformation simulés?






Pourquoi de la mécanique des structures ?

Quelle interprétation faut-il faire des champs de contrainte et déformation simulés?

Mécanique des structures

Chapitre 0: Introduction

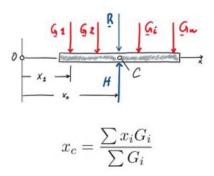
Dr. Alain Prenleloup SGM BA3 2024-2025

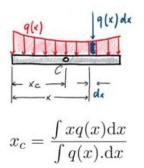
Cours de statique

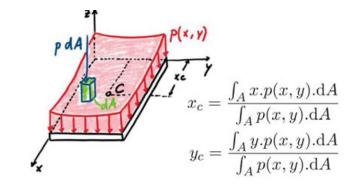
- Objectif : analyse et conception de système mécanique
- Corollaire : déterminer la rigidité et/ou la résistance nécessaire d'un système mécanique soumis à des charges prédéfinies
- Classe et comportement des matériaux (principalement le comportement élastique)
- Racine des notions de statique
 - Cinématique du point
 - Accélération nulle
 - Équilibre des forces et moments
 - Loi d'action et de réaction
 - Loi de Hooke 1d
 - Lien contrainte déformation
 - Structure élémentaire : bars, câble, poutre
- Type de rupture
 - Flambage (rupture dans le domaine élastique)
 - Rupture mécanique ou plastification (endommagement hors du domaine nonélastique)

Cours de statique

- Tenseur de force définit par un point d'application, une amplitude et une direction
- Le moment de la force au point A est défini par rapport à un point O arbitraire

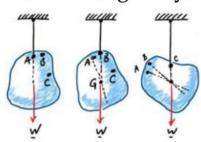

•
$$\overrightarrow{M_O} = \overrightarrow{F} \wedge \overrightarrow{OA}$$


- Équations d'équilibre des forces et des moments
 - $\sum F_i = 0$
 - $\sum M_i = \sum F_i \wedge r_i = 0$



Cours de statique

Centre de force ponctuelle, linéique distribuée, surfacique



Centre de gravité

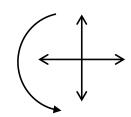
Center of gravity:

$$\overline{x} = \frac{\int x dW}{W} \qquad \overline{y} = \frac{\int y dW}{W} \qquad \overline{z} = \frac{\int z dW}{W} \qquad \bigcup dW = g.dm$$

$$= \frac{\int x dm}{m} \qquad = \frac{\int y dm}{m} \qquad = \frac{\int z dm}{m},$$

$$= \frac{\int x \rho dV}{\int \rho dV} \qquad = \frac{\int y \rho dV}{\int \rho dV} \qquad = \frac{\int z \rho dV}{\int \rho dV} \qquad \bigcup dm = \rho.dV$$

Cours de statique


<u>Liaisons méca. ext. planes</u>

Schéma

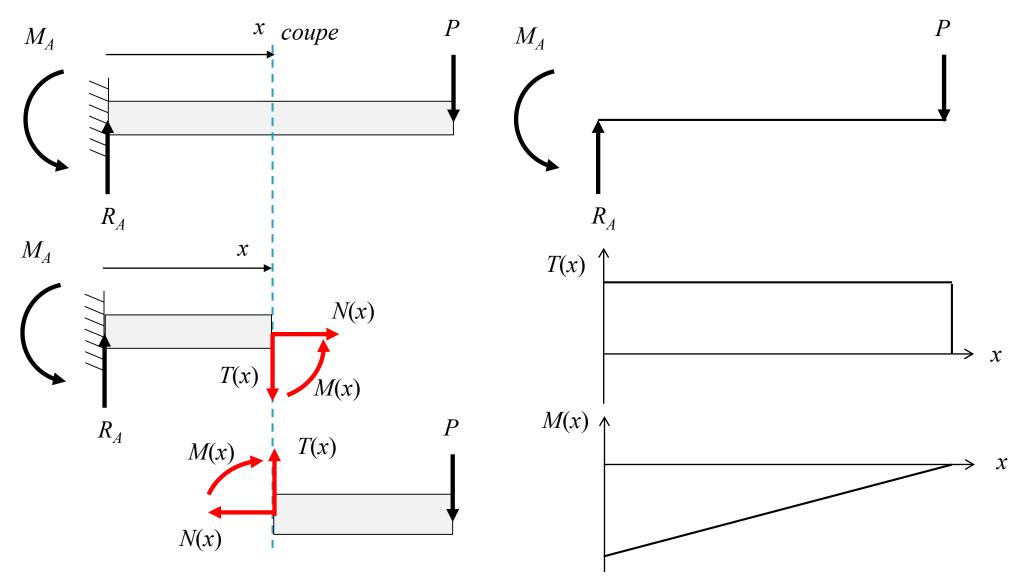
Efforts de réactions

Encastrement

///////

Articulation

Appui simple

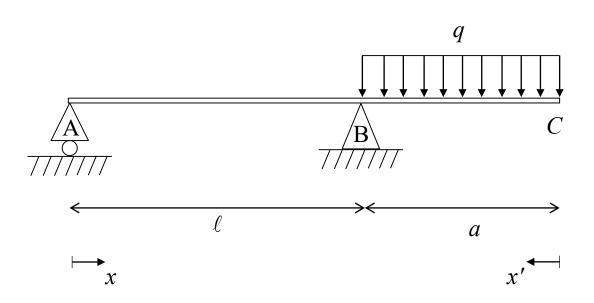

Autres liaisons mécaniques : encastrement, pivot, glissière, pivot glissant, hélicoïde, rotule appui-plan, sphère cylindrique, cylindre-plan, sphère-plan, etc.

Cours de statique

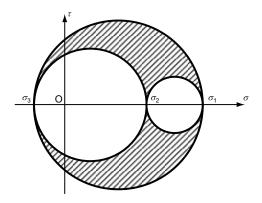
Efforts intérieurs dans une poutre

Diagrammes des efforts intérieurs

Problème 0.1


Calculer les réactions aux appuis de la poutre schématisée ci-contre, puis dessiner les diagrammes T et M des efforts intérieurs.

Application:


$$a = 1 \text{ m}$$

$$\ell = 2 \text{ m}$$

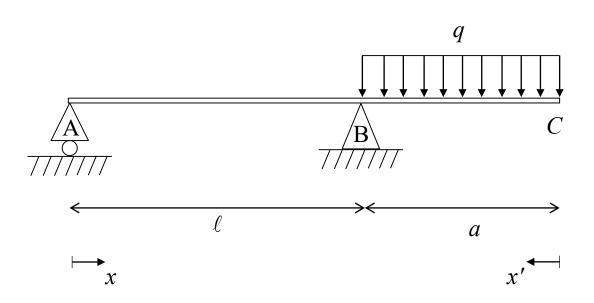
$$q = 5 \text{ kN} / \text{m}$$

Mécanique des structures

Chapitre 0: Introduction

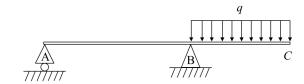
Dr. Alain Prenleloup SGM BA3 2024-2025

Problème 0.1

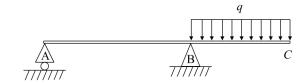

Calculer les réactions aux appuis de la poutre schématisée ci-contre, puis dessiner les diagrammes T et M des efforts intérieurs.

Application:

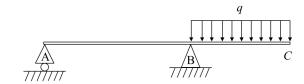
$$a = 1 \text{ m}$$


$$\ell = 2 \text{ m}$$

$$q = 5 \text{ kN} / \text{m}$$



Problème 0.1



Problème 0.1

Problème 0.1

